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Unlocking Novel Therapies: Cyclic Peptide Design for Amyloido-
genic Targets through Synergies of Experiments, Simulations, and
Machine Learning

Daria de Raffelea,b and Ioana M. Iliea,b,∗

Existing therapies for neurodegenerative diseases like Parkinson’s
and Alzheimer’s address only their symptoms and do not prevent
disease onset. Common therapeutic agents, such as small
molecules and antibodies struggle with insufficient selectivity,
stability and bioavailability, leading to poor performance in clinical
trials. Peptide-based therapeutics are emerging as promising
candidates, with successful applications for cardiovascular diseases
and cancers due to their high bioavailability, good efficacy and
specificity. In particular, cyclic peptides have a long in vivo
stability, while maintaining a robust antibody-like binding affinity.
However, the de novo design of cyclic peptides is challenging due
to the lack of long-lived druggable pockets of the target polypep-
tide, absence of exhaustive conformational distributions of the
target and/or the binder, unknown binding site, methodological
limitations, associated constraints (failed trials, time, money) and
the vast combinatorial sequence space. Hence, efficient alignment
and cooperation between disciplines and synergies between
experiments and simulations complemented by popular techniques
like machine-learning can significantly speed up the therapeutic
cyclic-peptide development for neurodegenerative diseases. We
review the latest advancements in cyclic peptide design against
amyloidogenic targets from a computational perspective in light of
recent advancements and potential of machine learning to optimize
the design process. We discuss the difficulties encountered when
designing novel peptide-based inhibitors and we propose new
strategies incorporating experiments, simulations and machine
learning to design cyclic peptides to inhibit the toxic propagation of

∗ E-mail: i.m.ilie@uva.nl
a University of Amsterdam, van ’t Hoff Institute for Molecular Sciences, Science Park
904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
b Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O.
Box 94157, 1090 GD Amsterdam, The Netherlands

amyloidogenic polypeptides. Importantly, these strategies extend
beyond the mere design of cyclic peptides and serve as template
for the de novo generation of (bio)materials with programmable
properties.

1 Introduction

Neurodegenerative disorders, such as Alzheimer’s, Parkinson’s
and Creutzfeld-Jakob disease, affect over 50 million people
world-wide, with over 10 million new cases a year. The world
health organization projects that by 2040, neurodegeneration will
become the second leading cause of death after cardiovascular
disease1. The associated polypeptides are intrinsically disordered
(IDP) or rich in intrinsically disordered regions (IDRs), character-
ized by the lack of stable secondary structures in the native state2.
What they all share is the ability to accumulate in liquid-like mem-
braneless organelles and/or form insoluble solid-like aggregates
(e.g. oligomers, amyloid fibrils), which can alter protein func-
tionality3–7.

Various approaches have been developed to interfere with
the accumulation processes by stabilizing or eliminating spe-
cific monomeric or aggregated forms of the responsible polypep-
tides8,9. They rely primarily on the design of small molecules
or antibodies that bind to monomeric or aggregated protein
species, thereby making the substrate unavailable for conver-
sion10 and/or sterically interfering with the aggregation pro-
cess9,11–13. Traditional small molecule drugs and protein-based
therapeutics have made good contributions, yet their limitations
in terms of selectivity, stability, and bioavailability14,15, as well
as their repeated failure in clinical trials16,17 have inspired the
search for alternative therapeutic approaches. Among these, pep-
tides and particularly cyclic peptides are attracting considerable
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attention due to their unique structural properties and diverse bi-
ological activities18,19. Their cyclic nature confers enhanced sta-
bility and resistance to proteolytic degradation, while maintain-
ing a robust binding to the target20. Cyclic peptides have proven
to be excellent candidates for cancer therapy21, organ transplan-
tation22 and inhibition of amyloid aggregation23,24. Their size
and functional properties ensure that the contact area is large
enough to provide high selectivity25, their ability to form salt-
bridges and hydrogen bonds can lead to strong binding affini-
ties26, and cyclization increases their proteolytic stability27.

Amyloid-forming polypeptides, such as amyloid-β (Aβ42), α-
synuclein (α-syn) and amylin (hIAPP), share the intrinsic disor-
der independently of their size or residue sequence. The cellular
prion protein (PrPC) consists of a membrane-anchored ordered
globular domain composed of three α-helices and a two stranded
anti-parallel β -sheet preceded by a 100 residue unstructured flex-
ible tail. Despite the well-defined secondary structure in its
monomeric form, the cellular prion protein lacks a specific bind-
ing site accessible to potential small molecule inhibitors8,28,29.
Due to their properties, cyclic peptides can selectively intervene
in the folding and aggregation process, bind even to targets lack-
ing an easily accesible druggable pocket30 or heterogeneous and
dynamic species31, regulate the conformational stability of the
target polypeptide and potentially halt or slow down disease on-
set or progression. Furthermore, the stability and permeability of
cyclic peptides enable them to cross the blood-brain barrier32, a
crucial requirement for effective neurodegenerative disease ther-
apies.

Advances in peptide synthesis techniques, combinatorial chem-
istry, and computational tools allow the de novo design and tuning
of the structural elements, target specificity, binding affinities, sol-
ubility, cell permeability and proteolytic stability of natural and
synthetic cyclic peptides. De novo design of cyclic peptides of-
ten rely on protein engineering strategies, such as rational de-
sign and directed evolution, which aid in the discovery and/or
improvement of peptides for drug-related applications33. Over
the past years, computer simulations and machine learning en-
abled the exploration of a vast chemical space, accelerating the
design and optimization of lead peptidomimetic candidates34,35.
Combined with directed evolution, they are versatile tools that
enable an initial in silico screening step to scan the full combina-
torial libraries and proposed mainly small molecules to be tested
in vitro36. While most of these models are trained on experimen-
tal data, more recently machine learning technologies combined
with molecular dynamics simulations successfully proposed, op-
timized and reduced the number of chemical compounds to be
tested experimentally at a later stage37. In contrast to small
molecules and protein optimization, the use of machine learning
for de novo peptide design is still in its early stages38–40 and its
potential has been demonstrated mainly in non-therapeutic appli-
cations39.

In this paper, we provide an overview of the recent advance-
ments of the utilization of cyclic peptides as therapeutic or imag-
ing agents for neurodegenerative diseases, particularly focusing
on the amyloid-β peptide, α-synuclein, amylin and the cellular
prion protein. We emphasize on the importance of the synergy

Fig. 1 a) Ferulic aldehyde (MW 194 Da) inhibits the Aβ42 multimeriza-
tion. b) Cartoon representation of the Aducanumab antibody (PDB ID:
6CO341) (MW 146 kDa). Highlighted are the heavy chain (cyan), light
chain (light blue). The area enclosed by the red circle represents the
binding interface with the antibody and the N-terminus of the Aβ42 pep-
tide. c) Naturally-occurring cyclotide kalata B1 (MW 2.92 kDa), derived
from residues 306-311 of tau42.

between computer simulations and experiments in light of the
latest developments in machine learning for cyclic peptide design
and optimization. Additionally, we provide a recipe for a poten-
tial approach to capitalize on the predictive power and results
from computer simulations and AI in the development of cyclic
peptide-based therapeutics.

2 Anti-amyloid therapeutic agents

2.1 Small molecules and antibodies
To date, extensive research efforts have been dedicated to the de-
velopment and advancement of small molecules and antibodies
targeting neurodegenerative targets into clinical trials16,17,43,44.
Small molecules have a low molecular weight (<900 Da) and hy-
drophobicity, and can therefore more readily traverse cell mem-
branes and distribute throughout the body45. They offer advan-
tages such as oral administration and scalability for mass produc-
tion46. Nevertheless, they often bind to rigid targets with acces-
sible druggable pockets, i.e. active sites or cavities on the surface
of a protein with well defined structure that can accommodate
small molecules. Proteins and peptides associated with neurode-
generative disorders are often intrinsically disordered and do not
possess a well defined structure in their native state2,47,48, which
prevents the existence of druggable pockets and implicitly access
to long-lived cavities for small-molecule binding. Despite their
shortcomings, small molecules have been at the forefront of drug
development against amyloid-β42, α-synuclein, amylin and prion
protein condensation. Particularly, natural products and their
degradation products were shown to alter the aggregation of the
target polypeptide or modulate its toxic behavior49–64 (Fig. 1(a)).
One example comes from curcumin, which is a natural product,
that has various benefits such as preventing amyloid formation
and promoting the formation of "off-pathway" soluble oligomers
and prefibrillar aggregates65,66; It can also disrupt Aβ40 fibrils
and break down tau tangles67,68. Additionally, the degradation
products of curcumin - ferulic acid and vanillin - have a better
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solubility than curcumin. Ferulic acid is a potent substance that
can destabilize Aβ40 and Aβ42 fibrils69. Similarly, vanillin can pre-
vent amyloid aggregation in living organisms70. Likewise cholic
acid, a primary bile acid, presents an anti-amyloidogenic behav-
ior, inhibiting the amyloid formation and preventing secondary
nucleation59. Vitamin k3, known for its anti-inflammatory and
anti-cancer properties, inhibits the Aβ42 aggregation process and
has a positive impact on reducing cytotoxicity in human neuronal
cell line62. We refer the interested reader to a comprehensive re-
view of small molecule inhibitors for amyloid-β 71 for amyloido-
genic polypeptides in general72.

Antibodies are Y-shaped proteins of larger molecular weight
than small molecules (>150 kDa), which can recognize and bind
to protein targets with high specificity and modulate their toxic
behavior73. In particular, monoclonal antibodies have been de-
signed both for therapeutic and diagnostic applications. They
bind to amyloidogenic polypeptides and/or their aggregates to
stabilize a desired conformations and make the substrate unavail-
able for conversion10,43 and/or sterically interfere with the ag-
gregation process11–13. For instance, the DesAbs single-domain
antibodies targeting Aβ42 epitopes74 interact with the monomeric
peptide, bind with high affinity to the oligomeric species, but not
the fibrillar structures, can inhibit secondary nucleation12 and
suppress Aβ42-mediated toxicity in C.elegans74. Aducanumab and
lecanemab, approved anti-Aβ42 agents, are monoclonal antibod-
ies effective for patients in the early stages of AD due to their
ability to reduce amyloid deposits in the brain43 (Fig. 1(b)). Ad-
ucanumab binds at the N-terminal residues 3 to 7 and can dis-
criminate between monomers and aggregated species44, while
lecanemab binds to soluble Aβ42 protofibrils75. Cinpanemab and
prasinezumab, two monoclonal antibodies directed against α-
synuclein aggregates failed in clinical trials due to the lack of pos-
itive effects in disease progression16,17. The POM-family of anti-
bodies (POMologues) has been developed to recognize a variety
of epitopes along the sequence of the cellular prion protein10 and
modulate its toxic effects76. Notwithstanding, no drug against
prion diseases is currently in clinical trials. Despite the recent
success in the Alzheimer’s field with aducanumab43 and the po-
tential of gantenerumab77, antibodies have limitations as thera-
peutics, including stability and immunogenicity14,15, which can
impact clinical efficiency.

2.2 Cyclic peptides

Cyclic peptides are naturally occurring or chemically synthesized
macrocycles consisting of circular sequences of amino acids78–81,
Fig. 1(c). Compared to small molecules, they can bind larger,
more polar and solvent exposed protein surfaces20. To mimic
naturally occurring cyclic peptides, the macrocycles can be exper-
imentally synthesized from linear precursors by connecting their
N- and C-terminal residues via covalent bonds (head-to-tail cy-
clization)82. Chemically, cyclization can be achieved through lac-
tamization or via disulfide bond formation ensuring the link be-
tween the two termini of the linear precursor83. Head-to-tail cy-
clization restricts the dynamics of a peptide and can stabilize the
formation of β -hairpins. Alternative approaches to favor other

conformations such as α-helices can be achieved via stapling,
i.e. via cross-linking of two or more side-chains. We refer the
interested reader to detailed reviews on the synthesis of cyclic
peptides84 and stapled peptides85,86, and focus in the following
paragraphs on head-to-tail cyclized peptides.

Because of their physicochemical properties, cyclic peptides
present a series of advantages as compared to their linear pre-
cursors, small molecules and biological therapeutic agents such
as antibodies. First, the rigidity obtained through cyclization
provides increased stability, higher resistance to proteolysis27

and enhanced cell permeability as compared to linear pep-
tides20,87,88. Second, their size and functional properties ensure
that the contact area is large enough to provide high selectivity,
and their ability to form salt-bridges and hydrogen bonds can lead
to strong binding affinities26. Hence they can maintain a robust
antibody-like binding to (undruggable) interfaces with high affin-
ity20,79,89, due to their larger surface and implicitly the higher
number of hydrogen bonding partners. Third, cyclic peptides
have good in vivo stability, which contributes to enhanced reten-
tion and circulation particularly if they are rich in non-canonical
amino acids20.

Cyclic peptide-based therapeutics also face a series of chal-
lenges. Orally administered cyclic peptide-rich drugs struggle
with poor oral bioavailability78, because of the susceptibility of
cyclic peptides to resist proteolytic degradation in the gastroin-
testinal tract27. Nevertheless, different routes of administration,
such as subcutaneous or via intravenous injections, overcome
these difficulties and aid in the efficient delivery of the peptide-
drug to the target84. Another obstacle involves preventing off-
target interactions, a challenge often tackled by selectively modi-
fying natural amino acids in the sequence to non-natural ones84.

In the amyloid world, the cyclic peptide development has
been growing over the past decade30,78,80. Typical methods in-
volve designing peptides rich in aromatic moieties, hydrophobic
amino acids, or D-amino acids (due to the stereoselectivity for
L-amino acids of proteases) that disrupt the aggregation process,
i.e. β -breakers or agents that bind to monomeric and oligomeric
species, competing with the responsible polypeptide to hinder
its aggregation and/or toxic transformation90. For instance, the
RD2D3 D-peptide (H-ptlhthnrrrrrrprtrlhthrnr-NH2

∗), designed to
modulate the binding of PrPC to Aβ42 oligomers, interferes with
Aβ42–PrPC heteroassembly in a concentration-dependent man-
ner91. Its cyclic successor presents better in vitro potency and
pharmakinetic properties92 and could potentially alter Aβ42 ag-
gregation. The bicyclic DesBP peptide (RAACKLGIKACTSVY-
HACGGKRR) was rationally designed to bind monomeric Aβ42

at residues 31–36 and 38–4224,93 and was shown to alter the
morphology of Aβ42 aggregates in a dose dependent manner. In
particular, higher peptide concentrations lead to increased ag-
gregate disorder and reduced cytotoxicity93. Similarly, the BD1
cyclic peptide (O-ySGLIKWTTALLRTYC-NH2) was shown to in-
hibit α-synuclein fibril formation in vitro94. The D,L-α-peptide

∗ small letters indicate d-enantioneric amino acids
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CP-2 cyclic peptide (IJwHsK†) prevents α-syn aggregation into
toxic oligomers by an "off-pathway" mechanism95. Particularly, it
interacts with the N-terminus and the non-amyloidogenic region,
altering the protein’s membrane interaction properties and fib-
ril morphologies, thereby preventing the toxic membrane disrup-
tion. The macrocyclic inhibitory peptides (MCIPs), were designed
to bind to amyloids by mimicking human IAPP (hIAPP) interac-
tion surfaces while maintaining only minimal hIAPP-derived self-
/cross-recognition elements96. Inhibitor selectivity was tuned by
chirality, which lead to nanomolar binding affinities to hIAPP, to
both amyloid-β40 and amyloid-β42 peptides, high proteolytic sta-
bility in human plasma and human brain-blood-barrier crossing
ability96. Also, disulfide-rich macrocyclic peptides are versatile
scaffolds for stable biochemical tool development. Two exam-
ples are SFTI-1 (GRCTKSIPPICFPD, disulfide connectivity: Cys3-
Cys11), a cyclic peptide that inhibits trypsin, and the kB1 cy-
clotide (GLPVCGETCVGGTCNTPGCTCSWPVCTRN, disulfide con-
nectivity: Cys5-Cys19, Cys9-Cys21 and Cys14-Cys26), which
have an inherent ability to inhibit the fibril growth of the tau-
derived hexapeptide Ac-VQIVYK-NH2 (AcPHF6)42. Particularly,
kB1 is a stronger inhibitor of tau fibrillizatiom than SFTI-1, en-
abling better binding and/or disruption of AcPHF6 fibrils. Re-
cently, tau mimetic peptides (β -bracelets) have been designed
starting from the high-resolution structure of the tau fibril fold
by extracting β -strand sequences linked by β -arcs97. The newly
generated peptides self-assemble into parallel β -sheet fibrils and
can serve as templates for the design of soluble inhibitors of tau
seeding.

In terms of the cellular prion protein, no progress has been
made on the therapeutic cyclic peptide market, despite its well
defined secondary structure in the soluble form. Potential causes
are the lack of druggable pockets or a stable unique binding re-
gion in the globular domain, and the intrinsically disordered na-
ture of the tail. Though, the existence of monoclonal antibodies
that bind in the nanomolar regime to PrPC indicate that putative
interaction sites are available10. We hypothesise that the rational
design of cyclic peptides starting from available high resolution
structures of PrPC in complex with monoclonal antibodies may
serve as starting points for the design of cyclic peptides that can
potentially stabilize the soluble isoform of the protein and there-
fore prevent its toxic transformation. Alternatively, by tweak-
ing the environmental conditions through mild solvent alteration,
e.g. by replacing water with D2O98 or by adding organic com-
pounds99,100, one can delicately alter the conformational land-
scape of the protein to reveal new (allosteric) druggable pockets
without disturbing the protein’s secondary structure. We refer the
interested reader to a series of reviews on peptide-based strate-
gies to interfere with protein misfolding and aggregation101,102,
a review on the therapeutic potential of cyclic90 and bicyclic pep-
tides103. Studies older than 10 years focusing on anti-amylin
cyclic peptides and peptide-based inhibitors have been reviewed
elsewhere104.

† J is the norleucine amino acid

3 Design methods and pitfalls

3.1 Conventional peptide design approaches

To design a soluble peptide-based binder with simultaneously
high target specificity, binding affinity, cell permeability and pro-
teolitic stability requires prior knowledge of the molecular target
and its environmental conditions. Experimentally, genetically en-
coded methods such as phage display105 or mRNA display106,107

allow the generation of libraries of cyclic peptides that bind with
high affinity to the target81,108. While these libraries offer the
generation of a vast array of molecules, the chemical synthesis
step as well as the numerous experimental trials are time and re-
source consuming. Furthermore, translating cyclic-peptide hits
obtained through display technologies into clinical applications
has proven challenging due to potential shortcomings in their
pharmacological properties, including limited oral bioavailability,
cell permeability, and solubility108. Other approaches, such as di-
rected evolution mimic the natural evolution process of a peptide
by creating a diverse library to screen for mutants with improved
characteristics109. Directed evolution does not require informa-
tion on the structure-function relationship of the substrate, and
relies on an iterative procedure of random mutations and artifi-
cial selection to discover new and useful proteins, but is limited
by the exhaustive pool of possibilities to be tested.

Over the past years, rational design approaches for de novo pep-
tide design have gained momentum. Rational design relies on a
detailed understanding of the amino acid sequence, protein high
resolution structure, function and interaction mechanisms33. It
involves the identification and mutation of key residues associ-
ated with protein stability to improve targeted physical and cat-
alytic properties33,110–112. Rational design relies on human in-
tervention, which often offers an informed and efficient means
to narrow down the search space for amino acids, resulting in
a smaller and more manageable pool of effective peptides. De
novo rational cyclic peptide design requires (a) high resolution
three dimensional structures and biochemical/biophysical infor-
mation of the target protein, and/or (b) detailed information
of the ligand properties (e.g. hydrogen bonding abilities to the
target, hydrophobicity, cyclization chemistry, existence of natural
and non-natural residues) and conformations (i.e. the designed
peptide may assume different conformations in the bound and
unbound states)113. Recent advancements in cryo-electron mi-
croscopy (cryo-EM) have enabled the determination of the three-
dimensional (3D) high resolution structures of new amyloido-
genic aggregates and their monomeric precursors114. These 3D
structures corroborated with a comprehensive understanding of
molecular interactions and structure-function relationships could
enable the rational design of (cyclic) peptides tailored for amy-
loidogenic targets. As a matter a fact, rational design has been
successfully used to generate the DesAbs antibodies targeting
amyloid-β 12 or specific α-synuclein and hIAPP epitopes115.

Starting from the high resolution structures of amyloid fibrils
of tau, α-synuclein, and amyloid-β , miniproteins, ranging from
35 to 48 residues, were successfully designed to bind to the fib-
rillar tips of the targets and inhibit aggregation in in vitro and in
vivo116. First a library of peptide-based inhibitors was created us-
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ing Rosetta. Subsequently, Rosetta’s MotifGraft protocol117 was
used to dock the inhibitors onto the fibrils and energy minimized.
The top-ranking inhibitors, i.e. the best binders, were subjected
to molecular dynamics simulations to assess the stability of the
complexes. Lastly, Rosetta’s ab initio structure prediction algo-
rithm118 was employed for the final screening of inhibitors. In-
hibitors with the most favorable energy predictions and the small-
est root mean squared deviations from the original design were
selected for experimental validation.

From a computational perspective, virtual screening allows fast
screening of millions of compounds prior to experimental testing,
thereby reducing cost and saving time. Virtual screening using
cyclic peptides is limited by the availability of three-dimensional
structures of the targets, by the absence of druggable pockets and
by the lack of information on the structure of the designed cyclic
peptide. To overcome some of the limitations, different computa-
tional techniques have been combined with machine learning to
predict protein structures and complexes thereof. Notable exam-
ples include HADDOCK (High Ambiguity Driven protein−protein
Docking)119–121 , RosettaFold122 and AlphaFold2123,124. HAD-
DOCK uses biochemical and biophysical interaction data, such as
nuclear magnetic resonance titration experiments or mutagenesis
data, to facilitate the protein-protein docking process119. Recent
developments include the generation of cyclic peptide conforma-
tions and docking to the protein target using knowledge of the
binding site on the protein side to drive the modeling125. Al-
phaFold2 is a deep-learning algorithm that incorporates neural
network architectures inspired by the physical and geometric as-
pects of protein structures126. It employs insights from evolu-
tionary conservation through the analysis of multiple sequence
alignments. These alignments are generated by considering in-
formation from evolutionary related proteins, along with the 3D
coordinates of a few homologous structures known as templates.
Similarly, RoseTTAFold also utilizes multiple sequence alignments
and a set of initial templates to accurately predict folded struc-
tures122 and protein-protein complexes40,122. These technolog-
ical advancements contribute significantly to the prediction pro-
tein structures through computational means. The intrinsic disor-
der associated with amyloidogenic polypeptides implies that the
target protein lacks a stable structure and that its native state
is better described by a diverse conformational ensemble rich in
disordered structures2,127,128. In this context, AlphaFold2 fails
to predict such conformations, which often gives rise to unreal-
istic structures that do not accurately capture the states in the
ensemble127–129 (Fig. 2). The lack of realistic and physically ac-
curate ensembles of structures hampers the design of any type of
inhibitor, which represents a limitation of these novel deep learn-
ing techniques.

3.2 Molecular dynamics simulations in peptide design

Computer simulations are powerful tools that enable the gen-
eration of quantitative conformational ensembles for the target
(intrinsically disordered) protein with properties comparable to
experimental results127,128,130. Moreover, molecular dynamics
simulations can go beyond experimental resolution to provide

Fig. 2 AlphaFold2 predictions for (a) amyloid-β42, (b) α-synuclein, (c)
hIAPP, (d) PrPC and (e) tau. The structural elements are color-coded
according to the confidence level of their AlphaFold2 prediction, red to
blue for low to high confidence intervals, respectively.

valuable insights into the stability and dynamics of cyclic pep-
tides131, structural detail on their membrane permeability132, as
well as quantitative distributions of their target-bound and target-
unbound states128.

Recently extensive molecular dynamics simulations at full
atomistic resolution have been used to successfully identify
transient monomeric Aβ42 conformations that have character-
istics of fibrillar structures133. States of the monomeric,
dimeric, oligomeric and fibrillar amyloidogenic polypeptides have
been thoroughly characterized and have been reviewed else-
where2,128,130. The identified pool of structures could be po-
tentially used for small molecule or cyclic peptide docking and
design. Ideally, access to a well organized, reliable, and consis-
tently maintained database of molecular dynamics trajectories of
amyloidogenic polypeptides would avoid the repeated generation
of similar trajectories and enable more rapid and consistent ad-
vancement in amyloid-related drug discovery. Example of such a
publicly available database is the Molecular Dynamics Data Bank.
The European Repository for Biosimulation Data.

For small molecule docking, snapshots from molecular dy-
namics simulations of the Aβ42 monomer134, dimer50 or mul-
timers52,135 have been clustered to generate representative en-
sembles to be prepared for docking, which can be experimentally
validated62. Briefly, curcumin and a set of curcumin derivatives
were docked onto Aβ42 multimeric conformations generated with
molecular dynamics simulations50,52. Results revealed that the
small molecules interact with high probability with the amyloido-
genic driving domains 16KLVFF20 and 29GAIIG33 of Aβ42 and dis-
rupt their secondary structure in the hexameric52 and dimeric
arrangements50. Interestingly, Silybin A (Sil A) and Silybin B (Sil
B), two diasteroisomers of silibinin were shown to have different
interaction preferences to Aβ40 and distinct biological response51

Sil A binding the aromatic residues F19 and F20 slowed down ag-
gregation, while Sil B interacting primarily with the C-terminus
of the polypeptide fully abolished amyloid aggregation. Com-
pelling evidence suggests that Silybin B is a powerful inhibitor
also against the toxic self-assembly of hIAPP53. Simulation and
experimental work, revealed that the frequent interactions of Sil B
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with the S20-S29 sequence induces disorder in the amyloidogenic
core and attenuates hIAPP toxicity and aggregation propensity53.
Myricetin, another polyphenolic flavonoid was shown to bind hI-
APP at the amyloidogenic core and its C-terminus preventing ag-
gregation and distorting the fibrils136. The Differential Binding
Score (DIBS) was introduced to determine the binding prefer-
ences of ligands to an ensemble of IDP conformations by com-
parison against random coil ensembles of the same protein ex-
tracted from MD simulations137. The validation was performed
on epigallocatechin-3-gallate (EGCG) binding to the unstructured
N-terminus of the tumor suppressor p53 protein, which com-
pared favorably to experimental results. The predictive ability
of simulations has been demonstrated in a translational study, in
which atomistic simulations were used to design new polythio-
phene derivatives against prion aggregation, prior to in vivo test-
ing54. The compounds subsequently showed substantial prophy-
lactic and therapeutic potency in prion-infected mice. Hence, sim-
ulations are powerful tools to generate conformational ensembles
of the target polypeptide, which can act as scaffolds for the dock-
ing and design of molecules to target specific amyloid-forming
regions.

The effects of antibodies on the structural and dynamic prop-
erties of amyloidogenic polypeptides have also revealed valu-
able insight into their modulating properties. Specifically, molec-
ular dynamics simulations of Aducanumab in complex with
Aβ42 revealed that the antibody sterically binds to monomeric,
oligomeric and fibrillar species, with the binding site at the N-
terminus (residues 2-7) preserved across all systems41. Addi-
tionally, the results showed that the monomer unfolds and hy-
drophobically collapses on the antibody’s surface, while in the
complexes with aggregated species, the β -sheet structure of the
peptide remains conserved41. All-atom simulations of PrPC in
complex with the neurotoxic POM1 and the innocuous POM6 an-
tibodies revealed that the two antibodies, despite targeting sim-
ilar epitopes, modulate differently the intrinsic flexibility of the
protein28 and its orientation with respect to the cellular mem-
brane29. The information extracted from the simulations of amy-
loidogenic polypeptides in complex with antibodies could serve as
starting points for the optimization and design of agents (e.g. an-
tibodies, peptides) to bind with higher affinity towards selected
species or for the rational design of cyclic peptides to modu-
late the target’s conformational landscape enabling access to new
binding sites.

Aside from the structure and the conformational landscape of
the target, the conformations of the designed cyclic peptide in
the target-bound and target-unbound states play an important
role. Essentially, the designed cyclic peptides often adopt differ-
ent conformations in solution as compared to the target-bound
state. To design an efficient peptide-based inhibitor one needs to
understand the conformational transitions of the cyclic peptides
between the different states. While some peptide-protein com-
plex structures are available, obtaining high resolution structures
of cyclic peptides in solution is hampered by their low core-to-
surface ratio, absence of specific couplings (e.g. NH–Hα) and
diverse conformations in solution131. Hence, molecular dynam-
ics simulations have been successfully used to predict the ener-

getically relevant conformational ensembles of cyclic peptides in
solution, compare favorably to available experimental data (e.g.
NMR chemical shifts)138. We refer the interested reader to a com-
prehensive review of computational methods to characterize the
behavior of cyclic peptides in solution131 and underline the syn-
ergistic effects of experimental and computational works.

Regarding the implications to the cyclic peptide design as-
pect, molecular dynamics simulations exceed experimental res-
olutions and can provide insight into the structural interactions
between the peptide and the target at atomistic level of detail.
For instance, macrocyclic peptides found in plants (cyclotides)
have been experimentally shown to inhibit the aggregation of tau
and amyloid-β42 fibrils139.The peptide was subsequently docked
onto 3D structures of Aβ42 fibrils and subjected to molecular dy-
namics simulations140. The results explained experimental ob-
servations to reveal that the Cter-M cyclotide from C. ternatea
(GLPTCGETCTLGTCYVPDCSCSWPICMKN) binds the Aβ42 fibril
via hydrogen bonding, hydrophobic, electrostatic and π −π inter-
actions, thereby inhibiting aggregation140. Particularly, the pep-
tide disrupts intermolecular hydrogen bonds and salt bridges in
the Aβ42 fibril, which are crucial for its structural integrity. The
effects occur within the first 50 ns of the simulations with disrup-
tions in the fibril secondary structure at residues 2-7 and 38-41,
resulting in the loss of extended β -sheet conformations. Impor-
tantly, the Aβ42 fibril in absence of the peptide maintains stable
extended β -sheet conformations throughout the simulation tra-
jectory.

Other approaches rely on available high resolution structures
of protein complexes to identify linear interface motifs with an
appropriate distances between residues to facilitate subsequent
cyclization141. In particular, backbone motifs of epitopes within
protein-protein interfaces were identified and compared against
available cyclic peptide databases to pinpoint promising candi-
dates with desired structural features141. Subsequently, the gen-
erated cyclic peptide-protein complexes underwent refinement
through molecular dynamics simulations in explicit solvent to de-
termine the binder with the highest target affinity. To validate
the efficacy of this method, initial tests were conducted on a com-
plex formed by the bovine trypsin inhibitor (BPTI) protein and
the trypsin protease. The method identified a cyclic peptide that
resembled the BPTI protein backbone at the interface, which is in
agreement with experimentally known structures.

Despite extensive simulations, challenges remain when explor-
ing the conformational space of IDPs both in the presence and
in absence of modulators142. Convergence is an issue due to
the rugged free energy landscapes of the polypeptides, their
size (which at times imposes the use of large simulation boxes)
and/or kinetic traps. Some of these difficulties are overcome
by using enhanced sampling techniques, implicit solvents and/or
coarse-grained models, which together with advances in comput-
ing power enable the access to longer time- and length-scales.
Alternative approaches, include reducing the size of the system
by simulating fragments of the polypeptide of interest and us-
ing statistical mechanics tools to derive the conformational free
energies of the full IDP143. Current force fields struggle with
over- or underestimating the properties of an IDP as compared
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to experimental quantities. Here, the IDP-tailored choices are
the all-atom additive Charmm36m144 and Amber ff14IDPSFF145,
which have been fine tuned to reach experimental agreement and
improve the conformational sampling of intrinsically disordered
proteins146. More recently, machine learning has been integrated
into the development and improvement of force fields147,148 and
novel techniques are emerging for IDP-specific force fields. An
example is Charmm-NN, which uses atom-type based neural net-
works to calculate energies and forces149 and is subject to further
improvements. A detailed overview of the challenges associated
with IDP simulations and their reconciliation with experimental
data have been reviewed in Refs.2,142. On the methodology side,
the determination of the binding free energies of the cyclic pep-
tide to the target also require special attention. For instance, us-
ing perturbation free energy calculations, a popular method with
small molecules, one can determine the relative binding free ener-
gies and mechanistic detail, while preserving the flexibility of the
complex150. Nevertheless, the convergence still remains an issue.
Alternatively, umbrella sampling, a technique that provided valu-
able insight into the themodynamics of monomer attachment to
amyloid fibrils143,151,152, would be a suitable choice for the de-
termination of the binding free energies of a peptide to the target.

3.3 Computational methods for cyclic peptide design
Various computational methods have proven essential in the de-
sign of cyclic peptides for amyloidogenic targets. TANGO153, an
algorithm developed to identify amyloidogenic sequences in pro-
teins, was used to guide the search for cyclic peptides with im-
proved binding affinity to Aβ40 oligomers154. Residues 102–117
(PRRYTIAALLSPYSWS) from the G strand of protein transthyretin
(TTR) were used as starting point to generate a peptide that binds
Aβ40 and redirects it towards protease-sensitive, nonfibrillar ag-
gregates. The peptide was head-to-tail cyclyzed and TANGO was
used to select specific mutations that would retain or stabilize the
antiparallel two-stranded β -sheet, resulting in a series of cyclic
G (CG) peptides. Out of the five newly synthesized peptides,
CG8 (TKVVTpPRYTIAKLSSPYSYSQ) ‡) had the most pronounced
affinity towards Aβ40, results confirmed by ThT fluorescence anal-
yses154. Cyclization of CG8 via a disulfide bond using the Sim-
ple Cyclic Peptide Application (SCPA)155 within ROSETTA and
the addition of a second D-proline (TKVVTpPRYTIAKLSSpPSYSQ)
lead to increased peptide stability, enhanced conformational uni-
formity, and a higher β -sheet content156. These findings highlight
the added value of of cyclization and conformational homogene-
ity as design strategies.

Des3PI (Design of Peptides targeting Protein-Protein Interac-
tions) is a novel computational fragment-based approach for de-
signing cyclic peptides with high target specificity157. This algo-
rithm performs docking calculations of an amino acid library onto
the targeted protein surface and subsequently connects residues
with favorable target binding affinities to generate novel cyclic
peptide sequences and structures. We envision that the potential

‡ small letters indicate d-enantioneric amino acids

of this method can be exploited to the maximum when combined
with quantitative representations from molecular dynamics simu-
lations to generate novel amyloid-binding cyclic peptides.

Among the computational methods employed in designing pep-
tides, FoldX emerged as a powerful tool due to its ability to de-
termine the free energy contributions of each atom at protein in-
terfaces based on its own position relative to neighbours in the
complex158. It can thereby predict the impact of mutations on
protein stability and optimize protein sequences for improved sta-
bility and desired functional properties. Relying on FoldX to per-
form an exhaustive thermodynamic profiling, the tandem pep-
tide CAP1 was designed to inhibit tau aggregation159. Both in
vitro and in vivo experiments confirmed computational predic-
tions by showing that CAP1 binds with high specificity and affin-
ity (EC50=145±49nM) to tau aggregates, impeding their spread
within cells. Additionally, CAP1 proved effective in hindering the
ability of tau polymorphs obtained from the brains of Alzheimer’s
disease patients to initiate aggregation.

4 Machine Learning for cyclic peptide design, prop-
erty and activity prediction

Machine learning enables the rapid in silico screening and devel-
opment of small molecules with therapeutic applications36. On
the peptide engineering side, machine learning has found recent
applications in antibody optimization160,161 and enzyme evolu-
tion34. The potential for cyclic peptide design is still in its initial
stages and requires accurate and reliable training data. For in-
stance, using conformational ensembles from molecular dynam-
ics, data can be generated and incorporated in training sets to cre-
ate machine learning models able to accurately predict structural
ensembles of peptides and their complexes or to generate peptide
sequences with improved physico-chemical properties. For im-
proved performance and increased accuracy, experimental data
(e.g. binding, toxicity) can be incorporated.

In fact, by using data from molecular dynamics simulations
of cyclic pentapeptides with diverse sequences and structural at-
tributes as training datasets, machine learning models have been
trained to predict structural ensembles for novel cyclic-peptide
sequences, a method known as Structural Ensembles Achieved
by Molecular Dynamics and Machine Learning (StrEAMM)162.
Alternative methods rely on generating comprehensive training
datasets comprising sequences of blood-brain barrier penetrating
linear peptides (BBPs) sourced from established databases and
scientific literature, alongside non-BBPs peptides from UniProt to
predict and explore novel BBPs with improved properties163. Ab-
Diffuser introduced a diffusion model tailored for the generation
of three-dimensional antibody structures and corresponding se-
quences for biotechnological applications164. Large protein fami-
lies can be reliably mapped to a sequence ordinate using sequence
alignment. AbDiffuser is an equivariant diffusion model designed
to take advantage of these properties. The model adheres to
physics-based constraints (e.g. bonds, torsional angles) and can
accommodate different sequence lengths, thereby reducing the
memory complexity. AbDiffuser relies on the Aligned Protein
Mixer (APMixer), a neural network operating within the SE(3)
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Reference Peptide Agent Model Solvent Method Sampling†

Barz et al.133 Aβ42 monomer - Charmm36m TIP3P H-REMD 40.8 µs
Jakubowski et al.52 Aβ42 fibril 94 small molecules Charmm36m TIP3P MD 10.4 µs
Dehabadi et al.50 Aβ42 dimer ferulic aldehyde Charmm36m TIP3P MD 2.6 µs

vanillin 2.6 µs
Sciacca et al.51 Aβ40 monomer SilA, SilB Charmm36 TIP3P MD 3 µs
Garcia-Vinuales et al.53 hIAPP monomer - Charmm36m TIP3P MD 6 µs

SilA 6.5 µs‡

SilB 6.5 µs‡

Dubey et al.136 hIAPP fibril myricetin Amber99sb TIP3P MD 1.05 µs
Chen & Krishnan137 p53-NTD EGCG OPLS-AA 2005 TIP4D MD 500 ns

Frost & Zacharias41 Aβ2−7 AduFab Charmm22* TIP3P MD 500 ns
Aβ42 AduFab 1 µs
Aβ42 dimer 781 ns
Aβ42 hexamer 1 µs
Aβ42 fubril 254 ns

Ilie & Caflisch28 PrPC - Charmm36m TIP3P MD 5 µs
PrPC POM1 MD 5 µs
PrPC POM6 MD 5 µs

Ilie et al.29 PrPC - Charmm36 ABSINTH MC/MD 4.8 µs MD + 240M MC
PrPC POM1 MC/MD 4.8 µs MD + 240M MC
PrPC POM6 MC/MD 4.8 µs MD + 240M MC

Kalmankar et al.140 Aβ42 monomer Cter-M cyclotide OPLS3e TIP4P RESPA 900 ns
Aβ17−42 pentamer 900 ns
Aβ11−42 fibril 900 ns
Aβ42 double fibril 900 ns

† Cumulative sampling over all replicas.
Abbreviations. MD, molecular dynamics; H-REMD, Hamiltonian Replica Exchange Molecular Dynamics;
MC/MD, hybrid Monte Carlo/Molecular Dynamics
RESPA, Reversible multiple time scale molecular dynamics;

‡ two sets of simulations at different concentrations.

Table 1 Computational studies of amyloidogenic polypeptides in complex with different agents.

equivariance framework to ensure consistent behavior, when
subjected to rotations and translations in the three-dimensional
space. Validation of the predictions through in silico and in vitro
work underlines the importance of computational and experimen-
tal synergies when designing molecules with tailored properties.

Within the landscape of neurodegenerative diseases, MobiDB
emerges as a resource that provides a comprehensive view of
polypeptide disorder165. This repository compiles an array of
comprehensive data related to intrinsically disordered proteins
(IDPs) and regions (IDRs) encompassing both experimental and
computational information on protein disorder, (e.g. sequences,
structures, and functional annotations). Its utility is extended to
experimental scientists seeking detailed information about indi-
vidual protein systems, as well as bioinformaticians who require
substantial, unified protein datasets for building statistical clas-
sifiers. More recently, MobiDB integrates AlphaFold predictions
sourced from AlphaFoldDB166.

A recent study highlighting the synergy between modern com-
putational techniques and experiments, focused on developing a
versatile method for designing proteins capable of targeting spe-
cific peptide sequences derived from armadillo proteins167. Using
no known structure, Monte Carlo simulations were employed to
construct a hash table for bidentate side-chain-backbone interac-

tions, to ensure the stability of the desired protein-peptide inter-
face. Identified key residues were optimized using Rosetta to con-
struct both the protein and peptide sequences while keeping the
identified residues unchanged. To enhance binding affinity and
specificity, alanine scanning was performed and the binding free
energies were determined to select the most favorable binders,
validated by experimental techniques (e.g. X-ray crystallography,
circular dichroism and biolayer interferometry). For IDPs, a sim-
ilar approach may aid in the initial generation of polypeptide-
cyclic peptide complexes than can then be investigated and opti-
mized via molecular dynamics simulations.

An alternative approach known as hallucination relies on re-
versing deep neural networks trained to predict native protein
structures, to design novel protein sequences and structures168.
Briefly, information encoded in several parameters of protein
structure prediction networks containing learned representations
and patterns that enable the networks to capture and predict var-
ious aspects of protein structures, including amino acid interac-
tions and statistical relationships is used to create realistic pro-
tein backbones and their corresponding amino acid sequences.
First, random amino acid sequences are input into the trRosetta
structure prediction network169 to predict distance maps. Then
Monte Carlo sampling is employed in residue space to refine the
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sequences and improve the predicted structures. This process
generated a diverse array of proteins with varied sequences and
structures. To validate the physical manifestation of these hal-
lucinations, synthetic genes for 129 hallucinated proteins were
expressed and purified. Among these, 27 proteins exhibit circular
dichroism spectra consistent with the target structures and the
resolved three-dimensional structures of three selected proteins
matched the hallucinated models, underlying the potential of the
method in de novo protein design.

Chroma introduced a generative approach to design peptides
with customized structures and functions170. It employs a diffu-
sion process, which incorporates conformational statistics of poly-
mer ensembles (e.g. dihedral angles, bonds) and a neural archi-
tecture for molecular systems based on random graph neural net-
works for molecular systems. The model can be conditioned via
external constraints (e.g. symmetries, substructures, and natural
language prompts) to generate proteins with specific properties,
including inter-residue distances, distinct structural domains, and
semantic properties guided by classifiers.

A recent investigation explored the synergistic potential of in-
tegrating advanced deep learning methods with a Rosetta-based
approach to enhance the accuracy and efficacy of designed pro-
tein sequences binding to specific target molecules171. The suc-
cess rate is defined by the Cα root mean squared deviations of
the binder between structures generated with AlphaFold2126 or
RoseTTAFold172 and Rosetta-designed structures. Large differ-
ences between them, i.e. deviations larger than 2.0 Å, indicate po-
tential design pitfalls for protein binders. Complemented by con-
fidence metrics from pairwise atomic environment predictions,
successful binders are separated from those that do not perform
well. The results show that AlphaFold2 or RoseTTAFold as eval-
uation filters in the protein design process increases the design
success rate by 10-fold as compared to Rosetta.

Other strategies integrate RoseTTAFold172, into denoising dif-
fusion probabilistic models (DDPMs) to design novel proteins
with specific structural or functional attributes173. This effort
gives rise to RFdiffusion174, which incorporates RoseTTAFold as
a denoising network within a generative diffusion model. Briefly,
protein backbones are created from scratch by initializing frames
of random residues and RFdiffusion is used to produce a refined
and denoised prediction. Subsequently, sequences for these struc-
tures are generated employing the ProteinMPNN network175.
RFdiffusion predictions can be optimized by incorporating addi-
tional information (e.g. partial sequence and fold data) and en-
hanced through pre-trained weights and the application of loss
functions.

Novel methods for cyclic peptide generation and design are
rapidly emerging and might prove to be useful in the amyloido-
genic polypeptide landscape. For instance, RINGER is a novel
macrocycle conformer generator, which is a diffusion-based trans-
former model tailored to generate novel peptide macrocycles
with specific sequences176. Alphafold has been recently modi-
fied to predict the structure of macrocyclic peptides (AfCycDe-
sign), which have been then experimentally validated177. On
the coarse-grained side, CycloPep emerges as a powerful tool to
generate cyclic peptides compatible with the MA(R/S)TINI force

field178.

5 A powerful trio: Simulations, experiments and
machine learning

The integration of computer simulations and experiments into
machine learning powered engines enables the design, optimiza-
tion and validation of custom protein-binding agents in an in-
formed, fast and robust way. Taken together, these techniques
have the necessary ingredients to generate novel, amyloid-specific
and effective cyclic peptide binders, and hence make the next sub-
stantial step in the design of cyclic peptides as therapeutic agents
or biomarkers against neurodegenerative diseases.

Following the recipe introduced throughout this paper, there
are at least four ingredients required for the successful de novo
peptide design binding amyloidogenic targets (Fig. 3). First, the
target scaffold and, in particular, quantitative distributions of con-
formations of this scaffold are necessary elements127. Available
three dimensional high resolution structures are excellent candi-
dates, however in absence thereof, deep learning based methods
such as AlphaFold2126, RosettaFold122 or Chroma170 can accu-
rately predict 3D models of protein structures even under user-
specified environmental conditions179. For IDPs, structure predic-
tion is more challenging because of their native disorder charac-
terised by a rugged free energy landscape127. Fortunately, exist-
ing or predicted structures can be investigated to obtain quantita-
tive conformational distributions using molecular dynamics sim-
ulations at full atomistic resolution (if the system size allows) or
at coarse-grained level (when dealing with bigger targets or ag-
gregates)2. For the latter, different methods can be employed to
reinstate atomistic detail180,181, which would enable to extract
the statistically relevant states of the target, to be used in subse-
quent steps.

Second, quantitative characterization of the conformations
populated by the cyclic peptides in the target-bound versus target-
unbound states are factors to be accounted for. The size of the
peptides (below 20 residues) and their cyclic nature often lim-
its their structure generation or even the complex prediction via
deep learning approaches such as AlphaFold-Multimer182 or via
experimental techniques131. Assuming that the initial peptide-
protein complex is known, e.g. from crystal structures183 or
from de novo design184, one can isolate the peptide from the
complex and explore its conformational space in the unbound
state via (enhanced sampling) molecular dynamics simulations
at full atomistic resolution131. For a cyclic peptide with unknown
bound and unbound conformations, a convenient approach to ob-
tain statistically meaningful conformations in solution is to gen-
erate its sequence by building its residues in an excluded volume-
obeying manner185, and sampling its conformational space via
Monte Carlo simulations and/or relaxing it using (enhanced sam-
pling) molecular dynamics simulations. Nevertheless, the latter
contains no information on the conformations sampled by the
peptide when bound to the target, which may represent a bot-
tleneck when trying to dock to the target.

Third, a key aspect is the structure of the complex, which aids
in understanding what type of interactions drive the assembly
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Fig. 3 Schematic overview of the proposed de novo peptide design strategy for binding amyloidogenic targets. The first steps involve the preparation
of the structures, the identification of quantitative conformational distributions of the target (top left panel) and the binder (bottom left panel).
After preparing the two structures, the peptide can be docked onto the monomeric or multimeric target to determine the structure of the complex.
Alternatively, the complex can be rationally designed starting from high resolution structures (middle panel). Next, the binding of the peptides is
computationally and experimentally tested. Importantly, the extracted data (e.g. binding free energies, kinetics) can be incorporated in feedback loops
powered by machine learning engines (e.g. active learning cycle) to improve the peptide sequences and/or properties. After several cycles, the best
binders are advanced into pre-clinical validation. Created with BioRender.com.

and which residues contribute the most to peptide binding and
complex stability. Experimentally, a series of crystal structures
of cyclic peptide-protein complexes have been resolved183 but
none in complex with amyloidogenic targets. The thermodynam-
ics and kinetics of peptide binding can be tested using meth-
ods such as surface plasmon resonance or isothermal titration
calorimetry but none provides specific information on the bind-
ing epitope. Computationally, if the representative 3D structures
are known, the peptide can be rationally designed and/or docked
onto the target and enhanced sampling or deep learning tech-
niques are employed to extract its binding free energy186. Alter-
natively, in absence of known structures and/or unstably bound
complexes, long molecular dynamics simulations could poten-
tially reveal new binding sites. This approach may be efficient
if the amyloidogenic target has a well defined secondary struc-
ture as is the case for PrPC, or has druggable pockets. However,
for polypeptides with a high degree of plasticity this is a resource
intensive and potentially ineffective strategy, which would only
slow down peptide design. Machine learning can facilitate the
design of peptides, and corroborated with simulations and/or ex-
periments, aid in the estimation of binding affinities187, and with
the peptide sequence optimization for optimal binding to the tar-
get171,188. Hence, if combined in an effective manner, computer
simulations and machine learning can considerably increase pep-
tide design and optimization efficiency and can therefore speed
up drug development.

The fourth ingredient prior to clinical advancement is the ex-
perimental in vitro and in vivo validation. Given the complemen-
tarity of computational and experimental work, an attractive ap-
proach would be to integrate the trio, i.e. simulations, machine
learning and experiments, into a dynamic and iterative engine.
For instance, molecular dynamics simulations and deep learning,
could be first used to predict and optimize protein and peptide
conformations, stability, binding affinities, aiding in the selection

of lead candidates prior to experimental validation. Then results
from the trio can be incorporated into feedback loops37,189,190

that would allow the design of novel and improved peptide se-
quences, prediction of cyclic peptide bioactivity, better target se-
lectivity, and off-target effects, thus aiding in the faster identifi-
cation of potent and safe candidates. Hence, the unique integra-
tion of such methodologies can aid the design and optimization
of novel experiments and computational work. Furthermore, an
approach as such can significantly reduce the number of exper-
iments that are required for validation and can increase the ho-
mogeneity across the experimental data sets (e.g. environmental
conditions)39.

6 Perspectives and outlook

In the last 20 years more than 16 cyclic peptide based therapeu-
tics have been FDA and EMA-approved, mainly as antibiotics, an-
ticancer therapeutics, antifungals and immunomodulators80,191.
Despite extensive research, no cyclic peptide-based drug for neu-
rodegenerative diseases has passed clinical trials. The challenges
arise due to the intrinsic disorder of the targets lacking traditional
long-lived druggable pockets90, the limited understanding of the
associated mechanisms and the often ineffective integration and
active feedback between disciplines. Here, we reviewed the de-
sign strategies for cyclic peptide design against amyloid-forming
targets from a computational perspective and emphasized on the
potential of the interconnection between computer simulations,
experiments and machine learning in anti-amyloid cyclic peptide
design for therapeutic, imaging and diagnostic applications. As
such, we proposed a recipe, which can function like a digital twin
i.e. creating scenarios relying on available information to improve
performance and prevent design flaws, allowing for rapid analy-
sis and accurate predictions192. Essentially in cyclic peptide de-
sign, the digital twin would rely on information from computa-
tional and experimental findings to simulate the effect of a cyclic
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peptide-based drug on an amyloidogenic target, while enhancing
the design and optimization of future peptide-based drugs, with
better targeting abilities, reduced risk and lower cost. Clearly,
the integration is not effortless and requires the efficient incorpo-
ration of extensive data from both experiments and simulations
(e.g. binding constants, toxicity assays, morphological effects
etc.) to be constantly exchanged between the physical and virtual
machine. Importantly, while simulations essentially act as digital
twins by themselves, the incorporation of homogeneous experi-
mental data via machine learning powered engines can improve
predictions, making the next substantial step in (peptide-based)
drug design.

The concepts and proposed strategies extend beyond drug de-
sign for therapeutic applications and hold the potential to aid in
adjacent fields such as (bio)material design or controlled drug
delivery193. In essence, it all boils down to the gathering and
the smart processing information from diverse sources to create
a digital correspondent of a material capturing its composition,
structure, responsiveness to external stimuli etc.194 to generate
design rules for programmable and adaptable materials195.
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