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A B S T R A C T

Neurodegenerative diseases, particularly tauopathies, pose significant global health challenges, especially in aging populations. Tauopathies are characterized by 
progressive neuronal damage and intracellular deposits of hyperphosphorylated tau. Early and accurate diagnosis is hindered by overlapping clinical features and 
reliance on post-mortem analyses, emphasizing the need for reliable in vivo biomarkers to improve early diagnosis and management. Advances in tau biomarkers and 
imaging have facilitated targeted Alzheimer’s disease therapies, but progress for other tauopathies remains inadequate. Future diagnostic frameworks should 
integrate multiple biomarkers across different tissues within specific timelines. However, challenges such as co-pathologies and limited understanding of pathogenic 
mechanisms remain significant obstacles. Emerging ultrasensitive technologies, including seeding amplification assays and minimally invasive sources of biomarkers 
like skin biopsy, hold promise for biomarker discovery. Here, we present the current clinical classification of tau proteinopathies, the challenges that are posed by the 
actual diagnostic criteria, followed by the most recent advancements in tau biomarker technologies.

1. Introduction

Neurodegenerative diseases pose a significant health challenge 
globally, particularly in aging populations. Among them, tauopathies, 
characterized by progressive neuronal damage and intracytoplasmic 
filamentous deposits of hyperphosphorylated, tau are the most prevalent 
[1]. Accurate and early diagnosis remains elusive due to overlapping 
clinical phenotypes and reliance on post-mortem neuropathological 
analysis. The clinical overlap among neurodegenerative diseases un
derscores the relevance of specific and reliable in vivo biomarkers to 
enable precise, early diagnosis and improve patient management. In 
fact, early detection is crucial, as clinical diagnosis often occurs after 
substantial neurodegeneration, limiting therapeutic efficacy of poten
tially effective drugs. Diagnostic tools, such as brain PET imaging and 
measurements of phosphorylated and total tau in cerebrospinal fluid 
(CSF) and plasma, have advanced Alzheimer’s disease (AD) diagnostics 
but remain inadequate for the majority of other tauopathies. These 
include primary tauopathies such as progressive supranuclear palsy 
(PSP), corticobasal degeneration (CBD), and other neuropathologically 

well-defined diseases in which the clinical presentation is often an un
reliable predictor of the underlying neuropathological diagnosis. This is 
due to the overlap of many signs and symptoms, such as parkinsonism 
with atypical features and cognitive-behavioral or language impair
ment, which further obscure the classical distinction between motor and 
cognitive syndromes in the movement disorders field. In addition, the 
individually low prevalence of many of these diseases further compli
cates their accurate characterization. The National Institute on Aging 
and Alzheimer’s Association (NIA-AA) 2018 framework underscored the 
importance of biomarkers, prioritizing pathophysiological evidence 
over symptom-based diagnostics for AD: biomarkers are categorized 
using the amyloid-tau-neurodegeneration (A-T-N) system [2]. This in
cludes amyloid PET imaging (A), phosphorylated tau biomarkers (T), 
and neurodegeneration markers (N) such as structural MRI, FDG-PET, 
and neurofilament light chain measure in CSF or blood. These tools 
are pivotal for diagnosis, disease staging, prognosis, and treatment 
monitoring. Similar paradigms based on biological markers such as 
alpha-synuclein detection in CSF or tissues, presence of neuro
degeneration and genetic variants (SynNeurGe research diagnostic 
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criteria) [3], and a biological staging system termed the neuronal 
α-synuclein disease integrated staging system (NSD-ISS) have now been 
proposed also for Parkinson’s disease and dementia with Lewy bodies 
[4]. However, no biologically based staging systems using tau protein 
biomarkers are currently available for primary tauopathies or other 
secondary tauopathies.

In this review, we aim to present the current clinical classification of 
tau proteinopathies, the challenges that are posed by the actual diag
nostic criteria, followed by the most recent advancements in the field of 
tau biomarker technologies.

2. Tau protein

Tau is a microtubule-binding protein coded by MAPT gene and 
widely distributed in both central (CNS) and peripheral nervous systems 
(PNS). The adult human brain presents mainly six Tau isoforms arising 
from the different combinations of the alternative splicing of exons 2, 3, 
and 10 (0N3R, 1N3R, 2N3R, 0N4R, 1N4R, 2N4R). In physiological 
conditions, the 3R and 4R isoforms are equally represented, while 0N, 
1N, and 2N isoforms are expressed as 37 %, 54 %, and 9 % of total Tau 
[5]. Other variants deriving from the alternative splicing of exons 4A 
and 6 and intron 12 can be found in CNS and, more frequently, in PNS 
[6]. The balance of different isoforms is strictly linked to brain health 
and function. For example, the imbalance between 4R and 3R isoforms is 
strongly associated with tauopathies [7], which are indeed classified 
based on the predominant neuropathological isoform in brain. In addi
tion, recent studies observed a decrease in the ratio between the isoform 
containing intron 12 and total tau in AD patients’ brains, while the 
isoform containing exon 6 was found to be less prone to aggregation, 
suggesting a pathogenic role for these isoforms [6,8].

Tau protein presents four main functional domains: (1) the N-ter
minal acts as a stabilizer and spacer for microtubules and is involved in 
signal transduction [6,7,9]; (2) the proline-rich domain regulates tau 
phosphorylation and participates in signal transduction [6]; (3) the 
microtubule-binding region is essential for microtubule assembly, sta
bilization, and axonal transport [6]; (4) and the C-terminal is crucial for 
tau folding and its ability to adopt multiple conformations [10,11].

Genetic mutations can alter tau sequence, reducing its affinity for 
microtubules and increasing its tendency for aggregation [12,13], or can 
alter tau splicing, changing the ratio between the different isoforms and 
influencing axonal transport [14]. Among post-translational modifica
tions, tau can undergo phosphorylation, acetylation, ubiquitination, 
methylation, oxidation, SUMOylation, O-GlcNAcylation, and N-glyco
sylation; these modifications, if not finely regulated, can alter its 
conformation, interaction with other proteins, and cellular localization 
[15,16].

Pathological detached tau undergoes aggregation cascade in a pro
cess that spans from oligomers to big aggregates, similar to other pro
teins linked to neurodegenerative diseases like alpha-synuclein and 
amyloid beta precursor protein. Aggregates of tau generate paired he
lical filaments or straight filaments, which form neurofibrillary tangles 
(NFTs) in neuronal body and neuropil threads in axons [17,18]. These 
big aggregates correlate with neurodegeneration and cognitive decline, 
albeit they seem to be less toxic than smaller oligomers and may play a 
protective role [19]. Finally, pathogenic tau is able to induce confor
mational conversion of monomers and propagate in the nervous system 
through specific spatiotemporal pathways (seeding) [20,21].

It has been recently shown that different tauopathies are character
ized by diverse tau conformers or ‘strains’ that associate with different 
filaments ultrastucture [22]. Protein conformers may determine the 
susceptibility of cell type to pathology and the spatial distribution of tau 
deposits [23]. For example, PSP is characterized by globose 4R phos
phorylated NFTs in the subthalamic nucleus, basal ganglia, and brain
stem, but also tufted astrocytes in the neocortex, neostriatum, and 
midbrain tectum, and oligodendroglial coiled bodies in the basal 
telencephalon, diencephalon, brain stem, and cerebellum. On the other 

hand, CBD shows neuronal and glial inclusions in the neocortex and 
neostriatum, but its peculiarities are the presence of astrocytic plaques, a 
different kind of tau aggregates compared to tufted astrocytes, and the 
extensive thread-like cell processes affecting both grey and white matter 
[24,25].

3. Clinical spectrum in tauopathies

Under the neuropathological term of tauopathies, we group diseases 
consistently defined by tau protein inclusions in the brain, where tau 
pathology at the cellular level correlates with both neurodegeneration 
and clinical manifestations of disease. Primary tauopathies are those 
where tau is the main or the only pathological protein, as opposed to 
secondary tauopathies in which tau pathology is associated with addi
tional pathogenic proteins like Aβ in AD. Another way to classify tauo
pathies is based on the predominant tau isoforms at the 
neuropathological level, along with the genetically determined or spo
radic origin of each condition [1]. Clinically, a few syndromes are highly 
predictive of a neuropathologically defined tauopathy, while others may 
be nonspecific, with less certain clinico-pathological correlations and 
with significant overlap in signs and symptoms with other neurode
generative diseases. As a consequence, the correct diagnosis of tauo
pathies in living subjects may also be challenging for specialists and may 
hinder the possibility to deliver the proper management for each 
disease.

3.1. Sporadic tauopathies

3.1.1. 3R/4R tauopathies
Sporadic tauopathies are the most frequent group, with AD, char

acterized by 3R+4R tau isoforms, being the most prevalent. Neuro
pathologically, AD is associated also with the extracellular deposition of 
Aβ protein, and it is the most common cause of dementia in the general 
population. The clinical spectrum of AD can range from subjective 
memory complaints to mild cognitive impairment (MCI) or dementia. 
However, in addition to the classic form of AD, there are other clinically 
important variants, such as the corticobasal syndrome (CBS). CBS can be 
clinically divided into subtypes, including the classic variant of CBS, the 
frontal-behavioral-spatial (FBS) variant, non-fluent agrammatic primary 
progressive aphasia (nfa-PPA), and the PSP-like syndrome (PSPS) [26]. 
Patients with CBS due to AD often exhibit prominent visuospatial im
pairments with aphasic features and are associated with a pattern of 
posterior cortical atrophy, frequently asymmetrical and primarily 
involving the precuneus and posterior cingulate cortex on MRI. 
Although CBS-AD typically presents with an earlier onset and a slower 
clinical progression compared to CBS caused by CBD, clinical data are 
insufficient to reliably distinguish between these underlying etiologies, 
making the use of biomarkers essential [27].

Another entity to consider in the differential diagnosis of AD is pri
mary age-related tauopathy (PART). PART is a primary tauopathy 
(3R+4R) not associated with amyloid protein, characterized by the 
accumulation of phosphorylated tau neurofibrillary tangles in limbic 
regions. It manifests mainly as amnestic cognitive impairment, and 
progression to dementia is significantly slower in PART than in AD. 
While AD progressively affects most cognitive domains, PART tends to 
preserve executive functions, visuospatial abilities, and language for a 
longer period [28,29].

3.1.2. 4R tauopathies
Sporadic primary 4R tauopathies, including PSP and CBD, represent 

a wide phenotypic spectrum ranging from atypical parkinsonian syn
dromes to frontotemporal dementia. Current diagnostic criteria define 
varying degrees of probability for these entities, ranging from "possible 
PSP" or "possible CBD," which are less specific but cover a broader 
phenotypic spectrum, to "probable PSP" or "probable CBD," which are 
more specific for the neuropathological diagnosis [26,30]. However, 
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Table 1 
Current findings from biomarkers studies in sporadic tauopathies.

Disease Tau 
isoforms

Clinical syndrome Imaging Matrix Biomarkers

ImmunoCapture 
Assays

Seeding 
Amplification 
Assays

AD 3R/4R 
(+Aβ)

Classic: Predominant episodic memory impairment. Binding in medial temporal lobe, posterior cingulate, and temporo- 
parietal areas (AV1451, THK5351, THK5317, PBB3, MK-6240, RO- 
948) [55].

Brain Tissue Total Tau [99,100] K18CFh [88,94]

​ Others: Logopenic variant, posterior cortical atrophy, CBS, 
dysexecutive variant [98].

​ ​ pT231 [99,101,102] K19CFh [87,89,
94]

​ ​ ​ ​ pT181 [100–102] K12CFh [137]
​ ​ ​ ​ pT217 [102] Full-length tau 

[138,139]
​ ​ ​ CSF pT181 [103–110] K18CFh [88,94]
​ ​ ​ ​ pT217 [111–114] K19CFh [87,94]
​ ​ ​ ​ pT231 [105] ​
​ ​ ​ ​ Total Tau [108–110,

115]
​

​ ​ ​ ​ N224 [116] ​
​ ​ ​ Plasma pT181 [70,103,104,

117–126]
/

​ ​ ​ ​ pT217 [111,113,114,
127–129]

​

​ ​ ​ ​ pT231 [130] ​
​ ​ ​ Skin Total Tau [131] K18CFh [92]
​ ​ ​ ​ ​ K19CFh [92]
​ ​ ​ Olfactory 

mucosa
Total Tau [132] K18CFh [94]

​ ​ ​ ​ pT181 [132] K19CFh [94]
​ ​ ​ Saliva Total Tau [133–136] /
​ ​ ​ ​ pT181 [74,103,

133–136]
​

PSP 3R/4Rtau RS: early postural instability and falls, vertical supranuclear gaze 
palsy, axial rigidity.

Binding in basal ganglia, midbrain, and other subcortical nuclei 
(AV1451, PBB3, THK5351, MK-6240, RO-948) [55].

Brain Tissue Total tau [140] K18CFh [88,94]

​ P: asymmetric onset and may be some levodopa responsiveness. ​ ​ ​ K19CFh [87,89,
94]

​ PGF: early and progressive gait freezing within 3 years of onset. ​ ​ ​ K12CFh [137]
​ SL: nonfluent/agrammatic variant of primary progressive aphasia 

or progressive apraxia of speech.
​ ​ ​ Full-length tau 

[138,139]
​ F: apathy, impulsivity, and/or dysexecutive syndrome with 

behavioral dysfunction.
​ CSF pT181 [104,141] K18CFh [88]

​ CBS: combination of asymmetric apraxia, cortical sensory loss, 
dystonia, myoclonus, alien hand/limb, rigidity, and bradykinesia.

​ ​ pT217 [142] ​

​ PI: early and prominent postural instability with falls. ​ ​ N224 [116] ​
​ OM: predominant slow vertical saccades, supranuclear gaze palsy, 

square wave jerks, and/or eyelid apraxia [30].
​ Plasma pT181 [104,117,118,

120–122]
/

​ ​ ​ ​ pT231 [130] ​
​ ​ ​ Skin Total Tau [77] K18CFh [91–93]
​ ​ ​ ​ ​ K19CFh [91–93]
​ ​ ​ Olfactory 

mucosa
/ K18CFh [94]

​ ​ ​ ​ ​ K19CFh [94]

CBD 4R CBS: combination of asymmetric apraxia, cortical sensory loss, 
dystonia, myoclonus, alien hand/limb, rigidity, and bradykinesia.

Binding in primary motor cortex, basal ganglia, and frontal cortex 
(AV1451, PBB3, THK5351, MK-6240, RO-948) [55].

Brain Tissue / K18CFh [88]

(continued on next page)
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Table 1 (continued )

Disease Tau 
isoforms 

Clinical syndrome Imaging Matrix Biomarkers

ImmunoCapture 
Assays 

Seeding 
Amplification 
Assays

​ FBS: prominent behavioral or personality changes (apathy, 
disinhibition), executive dysfunction, and/or visuospatial deficits.

​ ​ ​ K19CFh [87,89]

​ Nfa-PPA: nonfluent/agrammatic variant of primary progressive 
aphasia or progressive apraxia of speech.

​ CSF pT181 [104] K18CFh [88]

​ PSPS: axial or symmetric rigidity or bradykinesia, early falls, 
postural instability, supranuclear gaze palsy, and/or decreased 
velocity of vertical saccades [26].

​ ​ pT217 [142] ​

​ ​ ​ Plasma pT181 [104,120] /
​ ​ ​ Skin Total Tau [77] K18CFh [91–93]
​ ​ ​ ​ ​ K19CFh [91–93]
​ ​ ​ Olfactory 

mucosa
/ K18CFh [94]

​ ​ ​ ​ ​ K19CFh [94]

AGD 4R Possible association with dementia and psychiatric disturbances, 
while some studies have not demonstrated such associations 
[143].

/ Brain tissue / K12CFh [137]

​ ​ ​ ​ ​ K19CFh [89]
​ ​ ​ Plasma pT181 [120] /

GGT 4R Type I: bvFTD and/or primary progressive aphasia / / / /
​ Type II: PSP syndrome and/or CBS. ​ ​ ​ ​
​ Type III: parkinsonism, dementia, and lower motor neuron 

involvement [36].
​ ​ ​ ​

Pick’s disease 3R bvFTD, primary progressive aphasia, parkinsonism with CBS [38]. Binding in frontal and temporal cortex. Weaker binding than AD 
with 3R/4R tracers due to 3R predominance (AV1451) [144,145].

Brain Tissue / K19CFh [87,89]

​ ​ ​ ​ ​ K18CFh [88]
​ ​ ​ ​ ​ K12CFh [137]
​ ​ ​ ​ ​ Full-length tau 

[138]
​ ​ ​ Skin / K18CFh [92]
​ ​ ​ ​ ​ K19CFh [92]

IgLON5 3R/4R REM and non-REM sleep disorders, sleep apnea, stridor, bulbar 
dysfunction, ocular motor abnormalities, autonomic symptoms, 
parkinsonism, cerebellar ataxia, and/or chorea [51].

Increased tau binding in the brainstem, particularly the pons and 
dorsal medulla. Uptake also in the cerebellum. Tau accumulation 
increased over time in the medulla (PI-2620) [146].

/ / /

E. Vacchi et al.                                                                                                                                                                                                                                  
Parkinsonism

 and Related Disorders 134 (2025) 107772 

4 



particularly in CBS, neuropathological correlation remains low, as other 
diseases can present with the same syndrome. Some series have found 
that up to 32 % of CBS cases correspond to neuropathological diagnoses 
of PSP, while 30 % are attributable to AD [31]. As previously mentioned, 
CBS due to AD does not have discriminative clinical features compared 
to CBS not due to AD, but differentiation can be made based on atrophy 
patterns (frontal and subcortical predominance in non-AD CBS vs. pos
terior predominance in CBS-AD) and, more importantly, by using AD 
biomarkers such as pTau217 [27]. On the other hand, due to the 
clinico-pathological overlap between CBS and PSP and the lack of bio
markers with sufficient discriminatory capacity between the two en
tities, there is an ongoing debate about whether they should be 

considered separate clinical syndromes or grouped into a single clinical 
entity [32,33]. Finally, the category of "probable 4R-tauopathy" was 
established to group the clinical syndromes of PSP and CBD into a group 
that encompasses all possible phenotypes [30]. This category allows for 
the inclusion of cases with shared clinical features between CBS and PSP 
in which a tauopathy etiology is suspected, aiming to achieve better 
clinico-pathological correlation rather than focusing on differential 
clinical syndromes. However, this approach may also limit the possi
bility to develop targeted therapy for single diseases.

There are other primary sporadic 4R tauopathies with less well- 
defined clinical syndromes compared to those previously mentioned 
and also without available biomarkers for reliable in vivo diagnosis. 

Table 2 
Current findings from biomarkers studies in genetic tauopathies.

Gene Tau 
isoforms

Clinical syndrome Imaging Matrix Biomarkers

ImmunoCapture 
Assays

Seeding 
Amplification 
Assays

MAPT 3R, 4R, 
3R/4R

bvFTD, parkinsonism, PSP syndrome, CBS 
syndrome, amnestic syndrome, depending 
on mutation [147–149].

Weak binding with 3R/4R tracer (AV-1451) 
for N279K and P301L mutations (4R 
predominant). Strong binding similar to AD 
in one R406W mutation case (3R/4R). 
Other cases with prominent uptake in 
hippocampus, temporal, and frontal lobes 
(AV-1451) [150].

Plasma pT181 [122] /
Total Tau [73]

PSEN1 3R/4R AD. Very early onset, mean 43.6 years. 
Associated with myoclonus, epileptic 
seizures, spastic paraparesis, and 
extrapyramidal signs. 16 % of cases with 
atypical cognitive presentation (behavioral/ 
executive dysfunction, language 
impairment) [40,151].

Uptake similar to sporadic AD; in some 
cases, posterior predominance over medial 
temporal regions (AV-1451) [152,153].

Olfactory 
mucosa

/ K18CFh [94]
​ K19CFh [94]

Plasma pT217 [113,154] /
pT181 [154,155]

PSEN2 3R/4R AD. Variable age of onset (45–88 years). 
Episodic memory impairment. Atypical 
cases include FTD and parkinsonism [40,
151].

Uptake similar to sporadic AD; in some 
cases, posterior predominance over medial 
temporal regions (AV-1451) [152,153].

Plasma pT181 [154] /
pT217 [154]

APP 3R/4R AD. Early onset, mean 50.4 years. 
Predominant episodic memory impairment. 
Frequently associated with myoclonus and 
epileptic seizures [151].

Different uptake compared to sporadic AD. 
Early uptake in precuneus and posterior 
cingulate (AV-1451) [152].

Plasma pT181 [154,155] /
pT217 [154]

Trisomy 
21

3R/4R 
(+Aβ)

AD. Early onset, mean 51 years. 
Predominant episodic memory impairment. 
Early functional decline with high 
prevalence of epilepsy (75 %) [156].

Widespread cortical tau uptake with a 
typical AD regional distribution (AV-1451) 
[156].

CSF pT181 [157] /

APOE4/ 
APOE4

3R/4R AD. Early onset, mean 65 years, later than 
PSEN1, PSEN2, APP, or DSAD. Predominant 
episodic memory impairment; rapid 
progression from MCI to dementia [42].

Sporadic AD pattern. APOE4 homozygotes 
exhibit higher levels of tau accumulation at 
earlier stages compared to APOE3 
homozygotes (AV-1451) [42].

/ / /

PRNP 3R/4R, 
(+PrP)

Genetic Creutzfeld-Jakob disease: 
dementia, myoclonus, visual and cerebellar 
symptoms, pyramidal and/or 
extrapyramidal symptoms.

Neocortical uptake with AD-like pattern 
(AV-1451) [160].

/ / /

Gerstmann-Sträussler-Scheinker: 
progressive cerebellar ataxia, cognitive 
impairment, sensory symptoms, pyramidal 
and/or extrapyramidal signs.
Fatal familial insomnia: sleep 
disturbances, dementia, ataxia, psychiatric 
and/or autonomic symptoms [158,159].

ITM2B 3R/4R, 
(+ABri, 
Adan)

Familial Danish dementia: cataracts, 
hearing loss, cerebellar ataxia, psychiatric 
symptoms, and dementia [44].

/ / / /

Familial British dementia: spastic 
paraparesis, cerebellar ataxia, stroke-like 
episodes, seizures, psychiatric symptoms 
and/or dementia [43].

HTT 4R Huntington’s Disease: chorea, 
parkinsonism, dystonia, ataxia, psychiatric 
symptoms and/or dementia [49].

/ Brain 
tissue

Conformational Tau 
(Alz-50) [161]

/

Plasma Total Tau [162] ​
Skin Total Tau [80] ​

AD: Alzheimer disease; PSP: progressive supranuclear palsy; CBS: corticobasal syndrome; DSAD: Down syndrome associated Alzheimer disease; MAPT: microtubule- 
associated protein tau; PSEN: presenilin; APP: amyloid-beta precursor protein; APOE: apolipoprotein E; PRNP: prion protein; ITM2B: integral membrane protein 2B; 
HTT: huntingtin.
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Among them, Argyrophilic Grain Disease (AGD) stands out as an age- 
related tauopathy characterized by the accumulation of argyrophilic 
grains with tau inclusions, initially in the limbic system and subse
quently progressing to neocortical structures. AGD frequently coexists 
with granular fuzzy astrocytes, a form of age-related tau astrogliopathy 
(ARTAG). Both alterations are often found in limbic structures [34,35].

Another primary 4R tauopathy with a defined clinical syndrome, but 
currently impossible to diagnose in vivo due to overlap with more 
prevalent syndromes and the absence of reliable biomarkers, is Globular 
Glial Tauopathy (GGT). GGT is neuropathologically divided into several 
subtypes and clinically exhibits significant heterogeneity. Lower motor 
neuron involvement may be a frequent and distinguishing feature in 
certain subtypes. MRI markers, such as pronounced temporal lobe at
rophy with preservation of the midbrain, can help differentiate GGT 
from PSP and CBD; however, there are currently no biomarkers avail
able for a reliable in vivo diagnosis [36,37].

3.1.3. 3R tauopathies
Pick’s disease is the only known primary 3R tauopathy and is 

currently considered a strictly neuropathological entity, as clinical 
antemortem diagnosis is not possible. This limitation arises from its 
clinical heterogeneity, overlap with other disorders, low prevalence, and 
lack of diagnostic biomarkers. Neuropathologically, it is characterized 
by frontal and temporal atrophy, with the presence of Pick bodies 
(argyrophilic 3R tau inclusions) and Pick cells (swollen neurons). Clin
ically, the most common presentations include the behavioral variant of 
frontotemporal dementia (bvFTD) and primary progressive aphasia, 
although motor phenotypes with CBS have also been reported [38].

3.2. Genetically determined tauopathies

Genetically determined primary tauopathies include those resulting 
from mutations in the MAPT gene, which follow an autosomal dominant 
inheritance pattern. Depending on the mutation, they can lead to the 
accumulation of different tau isoforms. The clinical phenotype of these 
patients ranges from bvFTD to parkinsonism, with clinical phenotypes 
resembling PSP and CBS [39].

Other genetically determined tauopathies associated with 3R+4R 
tau isoforms are linked to mutations in the amyloid precursor protein 
(APP) gene, the presenilin 1 and 2 genes (PSEN1 and PSEN2), trisomy 
21, and homozygosity for APOE4 [40–42]. These are genetically 
determined forms of AD, and neuropathologically, they are invariably 
linked to Aβ protein deposition.

Additionally, rare genetic diseases involving the ITM2B gene, which 
interacts molecularly with APP, are associated with tauopathy (3R+4R) 
alongside ABri and ADan proteins. Known as familial British and familial 
Danish dementia, these conditions manifest with cognitive impairment, 
progressive spastic tetraparesis, and cerebellar ataxia starting around 
age 60. Neuroimaging typically reveals features consistent with cerebral 
amyloid angiopathy [43,44]. Finally, some hereditary prion diseases 
due to mutations in the PRPN gene (e.g., E200K and V203I) result in a 
3R+4R tauopathy associated with the prion protein PrP. Clinically, 
these diseases can manifest with a combination of dementia, myoclonus, 
pyramidal and extrapyramidal symptoms, cerebellar ataxia, and/or vi
sual disturbances. MRI diffusion abnormalities in the caudate and pu
tamen can aid in the diagnosis [45,46].

3.3. Other secondary tauopathies

Among secondary tauopathies, we find other entities with tau co- 
pathology. Some of the most recently defined tauopathies, character
ized by a distinctive clinical syndrome and biomarkers that allow for 
diagnostic confirmation, include Huntington’s disease (HD). HD is a 
genetically determined condition caused by the expansion of the CAG 
trinucleotide repeat and manifests with motor disturbances (primarily 
chorea in early stages), as well as cognitive and neuropsychiatric 

symptoms [47–49]. Another disease recently classified in this category is 
anti-IgLON5-related tauopathy. Clinically, this condition is character
ized by parasomnias in both REM and non-REM sleep, sleep apnea, 
stridor, bulbar dysfunction, and extrapyramidal symptoms. Biomarkers 
include the detection of IgG4 anti-IgLON5 antibodies in serum or CSF, 
along with specific HLA haplotypes. Neuropathologically, it is defined 
by subcortical neuronal deposits of 3R+4R tau with a rostro-caudal 
gradient, different from other tauopathies such as PSP, CBS, or ARTAG 
due to its distribution and the absence of significant glial involvement 
[50,51].

4. Tau-based imaging biomarkers

Tau PET imaging has emerged as a promising tool for detecting 
abnormal tau pathology in various neurodegenerative diseases, such as 
AD, PSP, and CBD. This imaging modality provides valuable insights 
into disease progression and regional tau deposition, supporting both 
diagnosis and disease monitoring (Tables 1–2).

4.1. First-generation tau PET tracers

PET tracers targeting tau have undergone significant evolution over 
the years. First-generation ligands, such as [18F]AV1451 (or [18F] 
flortaucipir), faced notable limitations, including limited target affinity 
and off-target binding, particularly due to their affinity for non-tau- 
related structures like monoamine oxidase-B, which affects regions 
such as the basal ganglia [52]. When comparing AD and healthy elderly 
populations, tracer uptake was predominantly restricted to the medial 
temporal lobe in healthy subjects, consistent with neuropathological 
findings of PART in these individuals. In AD, however, uptake was more 
intense and extended to other temporo-parietal areas. In the various AD 
subtypes, tau deposits also appeared to follow expected neuropatho
logical patterns. While medial temporal lobe retention was consistent, 
findings in other cortical areas were variable in healthy individuals [53]. 
Additionally, in longitudinal studies, tracer uptake did not always show 
a stepwise progression based on neuropathology, sometimes presenting 
uniform accumulation rates instead [54].

In primary sporadic 4R tauopathies such as PSP and CBD, some 
studies have demonstrated uptake patterns consistent with expected 
neuropathology. However, off-target binding is particularly problematic 
in these patients because regions like the basal ganglia and midbrain are 
heavily affected by this phenomenon [55]. For [18F]AV1451, longitu
dinal studies have shown progressive tracer uptake and correlations 
with functional measures in these diseases [56]. One major drawback of 
this tracer, however, is its low affinity for straight tau filaments, such as 
those found in PSP and CBD [55].

4.2. Second-generation tau PET tracers

To improve tracer specificity, second-generation tau PET tracers 
were developed. In AD, tracers such as [18F]MK6240, [18F]RO948, and 
[18F]PI-2620 demonstrated high specificity for 3R+4R tau in the frontal 
cortex, temporal cortex, and hippocampus in postmortem studies, 
correlating with typical regions of tau accumulation in advanced AD. 
Although, with lower binding site density, these tracers also showed 
some affinity in PSP [57].

Tracers such as [18F]PI-2620 and [18F]PM-PBB3 (also known as 
[18F]florzolotau) have shown greater affinity for 4R tau compared to 
first-generation tracers and overcome the issue of off-target binding that 
affected PSP and CBD patients. These tracers can identify affected re
gions such as the midbrain, basal ganglia, and primary motor cortex, and 
compared to first-generation tracers, they appear to better reflect 
subcortical-specific tau accumulation. This has led to improving the 
correlation between tracer uptake and motor clinical manifestations 
[58]. Studies with [18F]PI-2620 have shown significant uptake in the 
globus pallidus of PSP patients; however, uptake has also been observed 
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in healthy controls, indicating limited specificity. Furthermore, in vivo 
uptake did not correlate well with levels found postmortem. While [18F] 
PI-2620 shows promise as a tracer for AD, [18F]PM-PBB3 is considered 
potentially more specific for 4R tauopathies [59]. In summary, the 
combination of second-generation tau PET tracers with other imaging 
techniques, such as amyloid PET or brain MRI, may provide additional 
value for diagnosis and decision-making in both AD and primary 4R 
tauopathies like PSP and CBD [60,61]. Recent postmortem and pre
clinical non-human studies suggest that the second-generation tracer 
[18F]OXD-2314 exhibits higher affinity for 4R tau compared to [18F] 
PI-2620 and [18F]PM-PBB3; however, clinical studies are needed to 
validate these findings [62].

In summary, tau PET appears to be a promising biomarker that may 
aid in identifying different primary tauopathies in vivo. However, 
further studies are needed to validate the results of new tracers and 
include longitudinal follow-ups to confirm their utility as potential 
diagnostic or monitoring biomarkers.

5. Tau-based molecular biomarkers

Tau protein measurement in biospecimens has emerged as a funda
mental tool for the accurate diagnosis of AD, and several studies have 
shown abnormal tau findings in various neurodegenerative diseases 
(Tables 1–2).

5.1. Immunocapturing technology

Originally, tau protein quantification in cerebrospinal fluid (CSF) 
was performed by ELISA in patients with AD [63]. Since then, many 
studies have consistently demonstrated increased levels of total and 
phosphorylated tau species in AD versus healthy controls [64]. How
ever, while CSF tau was associated with cognitive impairment, it didn’t 
correlate as well with tau burden by PET or post-mortem brain studies 
[65,66]. An increase in CSF total tau was also demonstrated in brain 
traumatic injury [67] and other neurodegenerative diseases like 
Creutzfeldt-Jakob disease (CJD), whereas phosphorylated tau was not 
observed in these conditions [64]. These findings support the hypothesis 
that phosphorylated tau elevation in CSF is specific for AD, and it is not 
merely a reflection of neurodegeneration and release of cell content in 
CSF. Moreover, in primary tauopathies like FTD or PSP, levels of tau, 
including several phosphorylated species and N-terminal fragments 
(N224) that are enriched in neurofibrillary tangles, were not observed 
[68,69]. These results suggest that alternative processing and secretion 
of tau in the extracellular space may occur in these diseases. Chem
iluminescence (CLEIA) and electrochemiluminescence (ECLIA) based 
fully-automated platforms for total and phosphorylated tau detection in 
CSF are currently used in clinical routines for AD diagnosis [70].

Lately, the rapid development of ultrasensitive immunoassays, like 
the single molecule array (Simoa), has largely increased the sensitivity 
and accuracy of tau detection in other biofluids like blood with obvious 
advantages for a less invasive and more extensible diagnostic tool. 
Similarly to CSF, phosphorylated tau species (pTau 181, pTau217 and 

pTau231, pTau205) were found to be increased in plasma of patients 
with AD early on in the disease course and correlated with the start of 
amyloid pathology in brain [71]. As far as concern other tauopathies, 
several studies have shown a non-specific increase of plasma total tau in 
FTD and DLB [72,73]; while, phosphorylated Tau was not increased in 
plasma of subjects with FTD, PSP, and CBS [64]. Of interest, plasmatic 
concentrations of pTau181 resulted strongly associated with Aβ-PET and 
CSF pTau181, independently from the diagnosis, suggesting that it could 
be a biomarker of AD-related pathology in other diseases [64].

Saliva is another biofluid that has been highly tested since the first 
detection of tau in 2011, however, no standardized and validated pro
tocols for diagnostic salivary tau measurement have been approved so 
far. A study using CLEIA platform showed an increase of phosphorylated 
salivary tau in MCI and AD [74], while another one, using a similar 
technology, showed negative results and argued that low levels of tau in 
saliva and the absence of correlation with CSF values prevent saliva from 
being a valid alternative to CSF [75].

Skin is highly innervated by sensory and autonomic nerves, in which 
axons are enriched in microtubules and tau [15]. Indeed, recent studies 
have analyzed Tau isoforms in skin nerves of patients with PSP, CBD, PD, 
MSA, AD, and HD. Higher levels of total tau measured by ELISA were 
observed in skin lysates of primary tauopathies and HD compared to 
healthy subjects and synucleinopathies. Further, it correlated to clinical 
variables alongside genetic and neuroimaging biomarkers in HD. Since 
skin biopsy is minimally invasive and allows the detection of other 
biological markers, such as alpha-synuclein in PD and other synuclei
nopathies, it is a promising source of multiple biomarkers for neurode
generative diseases [76–83].

5.2. Seeding amplification assays

Seeding amplification assays (SAA), Real-Time Quaking Induced 
Conversion assay (RT-QuIC), and protein misfolding cyclic amplification 
(PMCA), are alternative ultrasensitive assays initially developed for 
prion protein detection [84]. SAA are now extended to neurodegener
ative diseases for detection of minimal amount of misfolded proteins 
called seeds in CSF and other peripheral tissues (e.g., blood, skin, and 
olfactory mucosa) [85,86]. Biological samples are incubated with the 
substrates and subjected to alternative cycles of shaking and incubation, 
while thioflavin-T enables monitoring of amyloid fibrils formation, 
which results from the aggregation of the substrate. Tau-SAA was first 
developed for 3R-Tau detection in post-mortem brains and CSF of pa
tients with Pick’s Disease [87] and then expanded to study 3R/4R and 
4R [88,89] pathologies, like AD and PSP-CBD, respectively. These assays 
are based on fragments of recombinant tau (tauK18 for detection of tau 
4R and tauK19 for detection of tau 3R) that have been specifically 
modified (tauK18CFh and K19CFh) to increase sensitivity and specificity 
of the assay. It is conceivable that a panel of tau RT-QuIC assays for 3R, 
4R, and 3R/4R could support in future discrimination of several tauo
pathies [90].

Of particular interest is the application of SAA to skin tissue. A skin 
Tau-SAA study exploring 4R and 3R isoforms detection in two 

Fig. 1. Tau biomarkers 
Abnormal Tau pathology in the brain can be detected and visualized by PET imaging. Tracers of the first- ([18F]PI-AV1451) and second-generation ([18F]PI-2620) 
provide insights into disease progression and regional tau deposition. 
Pathological Tau can be detected in multiple biospecimens such as CSF, blood, saliva, olfactory mucosa, and skin. Several techniques have been developed for its 
detection. For ELISA, CLEIA/ECLIA, and SIMOA, the target antigen is linked by the capture (Ab1) and the detection (Ab2) antibody. Depending on the technique, Ab2 
is conjugated to an enzyme [ELISA: horseradish peroxidase (HRP) reduces its substrate, 3,3′,5,5′-tetramethylbenzidine (TMB), inducing a colorimetric reaction], a 
luminescent marker [ECLIA/CLEIA: ruthenium or iridium that emit luminescence after electrochemical stimulation], or a fluorophore [SIMOA: fluorescence]. The 
signal obtained is proportional to the amount of the target protein in the sample. SAA takes advantage of the ability of misfolded proteins present in samples (seeds) 
to recruit and trigger conformational changes in the provided substrate (recombinant protein), to create fibril aggregates that can be detected and stained by ThT. The 
measure over time of ThT fluorescence describes the kinetics of aggregate formation. 
The figure has been produced with bioRender software. The chemical structure of the compounds ([18F]PI-AV1451, [18F]PI-2620, and ThT) has been obtained from 
PubChem - National Center for Biotechnology Information (https://pubchem.ncbi.nlm.nih.gov/compound/Flortaucipir, 2-(2-(Fluoro-18F)-4-pyridinyl)-9H-pyrrolo 
(2,3-b:4,5-c’)dipyridine | C15H9FN4 | CID 145722629 - PubChem, Thioflavin T | C17H19ClN2S | CID 16953 - PubChem).
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anatomical sites, cervical area and distal leg, showed a greater sensi
tivity of 4R-SAA in cervical area for PSP and CBD [91]. These results 
were confirmed by other studies, which analyzed both autoptic and 
living skin biopsies in PSP CBD and AD [92,93].

Since olfactory dysfunction is a common symptom of several 
neurodegenerative diseases, Tau-SAA analysis of olfactory mucosa 
might be a promising tool, and it has shown good sensitivity for PSP and 
CBD patients [94]. However, olfactory mucosa collection might be 
invasive and burdened by complications such as bleeding or infection 
and might miss the olfactory epithelium, containing the pathology [95], 
while alternative less invasive techniques such as nasal brushing require 
otorhinolaryngologists [96].

The complexity and high content of proteins in blood make this 
biofluid less suitable for SAA; for example, it has been reported to 
contain inhibitors for RT-QuIC assay in samples from CJD [97]. At the 
moment, there are no available studies on Tau-RT-QuIC directly in blood 
for AD or other tauopathies. It is conceivable that other minimally 
invasive tissues, such as skin or saliva, may be among the best options 
for RT-QuIC and PMCA assays.

6. Conclusions and future perspective

In conclusion, tauopathies encompass a broad spectrum of clinico- 
pathological entities that, nonetheless, cannot currently be diagnosed 
in vivo with sufficient reliability due to the absence of specific bio
markers, except for AD and known genetic causes. The research field in 
peripheral biomarkers detection in neurodegenerative disorders is 
highly active and currently expanding, highlighting the importance and 
the urgency of adding novel biomarkers for the management of these 
diseases (Fig. 1). Tau biomarkers, in association with imaging progress, 
have significantly contributed to the biomarker-guided targeted thera
pies in AD. By contrast, the research of biomarkers for other tauopathies 
and Lewy bodies diseases has just started, and huge, conjunct efforts 
from the scientific community are required. It is now possible to envi
sion that for each disease, a combination of several markers, in different 
tissues in a precise time frame, will tremendously increase our capacity 
to diagnose correctly patients with overlapping clinical phenotypes. 
Future research should focus on integrating multimodal biomarkers and 
combining molecular, imaging, and biomarkers from different tissues to 
improve diagnostic precision and patient stratification. Additionally, 
longitudinal biomarker assessments over time could offer critical in
sights into disease progression and treatment response, further 
advancing personalized therapeutic approaches in tauopathies and 
other neurodegenerative disorders. Still, many challenges are on the 
horizon, such as the frequent occurrence of co-pathologies, especially in 
aging population, which might complicate the possibility to correctly 
stratify patients, and the limited knowledge of pathophysiological pro
cesses, especially in a spatio-temporal frame for most of the diseases. 
Based on the successful development in AD, the discovery of novel 
biomarkers in tauopathies and other neurodegenerative diseases will 
require a tiered process, starting from autopsy-confirmed cases, moving 
to CSF, blood, and peripheral tissues. Thanks to the continuous devel
opment of increasingly sensitive technologies and access to informative 
and minimally invasive tissues, like skin biopsy, novel promising bio
markers are emerging for neurodegenerative diseases. These results, 
together with the progress already reached for tau biomarkers in CSF 
and plasma for AD, will hopefully leverage the chances to deliver the 
urgently needed, accurate biomarkers for the diagnosis and treatment of 
patients with tauopathies.
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[46] G.G. Kovacs, J. Rahimi, T. Ströbel, et al., Tau pathology in Creutzfeldt-Jakob 
disease revisited, Brain Pathol. 27 (3) (2017) 332–344, https://doi.org/10.1111/ 
bpa.12411.

[47] M. Fernández-Nogales, J.R. Cabrera, M. Santos-Galindo, et al., Huntington’s 
disease is a four-repeat tauopathy with tau nuclear rods, Nat. Med. 20 (8) (2014) 
881–885, https://doi.org/10.1038/nm.3617.

[48] M. Gratuze, G. Cisbani, F. Cicchetti, E. Planel, Is Huntington’s disease a 
tauopathy? Brain 139 (Pt 4) (2016) 1014–1025, https://doi.org/10.1093/brain/ 
aww021.

[49] S.J. Tabrizi, S. Schobel, E.C. Gantman, et al., A biological classification of 
Huntington’s disease: the Integrated Staging System, Lancet Neurol. 21 (7) 
(2022) 632–644, https://doi.org/10.1016/S1474-4422(22)00120-X.
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[133] N.J. Ashton, M. Ide, M. Schöll, et al., No association of salivary total tau 
concentration with Alzheimer’s disease, Neurobiol. Aging 70 (2018) 125–127, 
https://doi.org/10.1016/j.neurobiolaging.2018.06.014.

[134] M. Shi, Y.T. Sui, E.R. Peskind, et al., Salivary tau species are potential biomarkers 
of Alzheimer’s disease, J Alzheimers Dis 27 (2) (2011) 299–305, https://doi.org/ 
10.3233/JAD-2011-110731.

[135] A. Tvarijonaviciute, C. Zamora, J.J. Ceron, et al., Salivary biomarkers in 
Alzheimer’s disease, Clin. Oral Invest. 24 (10) (2020) 3437–3444, https://doi. 
org/10.1007/s00784-020-03214-7.

[136] H.C. Lau, I.K. Lee, P.W. Ko, et al., Non-invasive screening for Alzheimer’s disease 
by sensing salivary sugar using Drosophila cells expressing gustatory receptor 
(Gr5a) immobilized on an extended gate ion-sensitive field-effect transistor (EG- 
ISFET) biosensor, PLoS One 10 (2) (2015) e0117810, https://doi.org/10.1371/ 
journal.pone.0117810.

[137] M.A. Metrick, N. do C. Ferreira, E. Saijo, et al., A single ultrasensitive assay for 
detection and discrimination of tau aggregates of Alzheimer and Pick diseases, 
Acta Neuropathol Commun 8 (1) (2020) 22, https://doi.org/10.1186/s40478- 
020-0887-z.

[138] Tennant JM, Henderson DM, Wisniewski TM, Hoover EA. RT-QuIC detection of 
tauopathies using full-length tau substrates. Prion. 14(1):249-256. doi:10.1080/ 
19336896.2020.1832946.

[139] B. Frey, D. Holzinger, K. Taylor, et al., Tau seed amplification assay reveals 
relationship between seeding and pathological forms of tau in Alzheimer’s disease 
brain, Acta Neuropathol Commun 11 (1) (2023) 181, https://doi.org/10.1186/ 
s40478-023-01676-w.

[140] C. Luk, G. Giovannoni, D.R. Williams, A.J. Lees, R. de Silva, Development of a 
sensitive ELISA for quantification of three- and four-repeat tau isoforms in 
tauopathies, J. Neurosci. Methods 180 (1) (2009) 34–42, https://doi.org/ 
10.1016/j.jneumeth.2009.02.015.
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